INTEGRABILITY, CONFORMAL BOOTSTRAP AND DEFECTS IN N=4 SYM

HeI kick-off meeting, January 2025 Andrea Cavaglià, University of Torino

WP1-Integrability and Bootstrability

UNIVERSITÀ DI TORINO

works with N. Gromov, J. Julius, M. Preti, N. Sokolova

arXiv: 2107.08510, 2203.09556, 2211.03203, 2312.11604, 2412.07624

N=4 SYM is often considered a "modern hydrogen atom"

It can be interesting if you come from different directions...

String Theory on Curved Space

two non-perturbative and very different approaches

Integrability:

Large N but finite coupling

It's magic: miracles in auxiliary 2d world

Solve one theory

Exact analytical results Not yet understood for all observables Conformal Bootstrap

Finite N and finite coupling

Exploits theory-independent principles: **OPE**, **locality**, **unitarity**, **Conformal symmetry**

Constrain space of theories

At finite coupling usually gives rigorous bounds on observables

Bootstrap gives allowed regions

special theories live close to the boundaries

N=4 SYM seems to be hidden deeper

To constrain it, combine the two methods: Bootstrability

Conformal Bootstrap + data from Integrability

Nice observables to test this idea

excitations of (supersymmetric) straight Wilson lines $\mathcal{O}_1(x_1)$ $\mathcal{O}_2(x_2)$ $\mathcal{O}_3(x_3)$ $\mathcal{O}_4(x_4)$

1d CFT axioms:

1)
$$x \to x' = \frac{ax+b}{cx+d}$$
$$\langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle = \langle \mathcal{O}_1(x_1') \dots \mathcal{O}_n(x_n') \rangle \prod_{i=1}^n |\frac{\partial x_i'}{\partial x_i}|^{\Delta_i}$$

2) Associative Operator Product Expansion

$$\underbrace{\star}_{\mathcal{O}_i(x_1)} \underbrace{\star}_{\mathcal{O}_j(x_2)} \underbrace{\star}_{k} = \sum_k C_{ijk} \underbrace{\mathcal{O}_k(x)}_{k} \underbrace{\star}_{k} \underbrace{\star$$

Will start by considering 4pt of identical lightest operators of dimension $\Delta_{ext} = 1$

Crossing equations:

$$\sum_{\Delta_n} C_n^2 \mathscr{G}_{\Delta_n}(x) = \mathscr{F}(x,g) \quad \forall x = \frac{x_{12}x_{34}}{x_{14}x_{23}}$$

 $\mathscr{G}_{\Delta}(x), \, \mathscr{F}(x, \, g) : \text{explicit}$

Integrability

A key result: the Quantum Spectral Curve

= equations for the "Q-functions"

$$\mathbf{Q}(u) \sim u^{\Delta}, \ u \to \infty$$

[Gromov,Kazakov, Leurent Volin] + ...

Can compute spectrum (although only state-by-state)

Integrability

A key result: the Quantum Spectral Curve

= equations for the "Q-functions"

$$\mathbf{Q}(u) \sim u^{\Delta}, \ u \to \infty$$

Can compute spectrum (although only state-by-state)

Bootstrap

 $\sum_{\Lambda} C_{\Delta}^2 \, \mathscr{G}_{\Delta}(x) = \mathscr{F}(x,g)$

[El-Showk,Paulos,Poland,Rychkov, Simmons-Duffin,Vichi '12] + ...

differentiate in x

 $\sum_{\Lambda} C_{\Delta}^2 \, \overrightarrow{\mathscr{G}}_{\Delta} = \overrightarrow{\mathscr{F}}, \quad C_{\Delta}^2 \ge 0$

Can check for consistency of proposed data. E.g. we can check some hypothesis on the spectrum...

can treat all Δ_i above a cutoff as unknowns

Consistent

(separating hyperplane)

 $\sum_{\Lambda} C_{\Delta}^2 \, \mathscr{G}_{\Delta}(x) = \mathscr{F}(x,g)$

Allowed range for C_1^2

differentiate in x

 $\sum_{\Lambda} C_{\Delta}^2 \, \overrightarrow{\mathscr{G}}_{\Delta} = \overrightarrow{\mathscr{F}}, \quad C_{\Delta}^2 \ge 0$

Can check for consistency of proposed data. ... or e.g. bound some OPE coefficients

How do integrability spectral data help?

If we know little of the spectrum

Examples of results: the leading OPE coefficient in the line CFT

The simplest 4-point function itself

Challenges of this approach

What can we do?

To focus on higher OPE coefficients: mixed bootstrap systems with external non-protected operators

introduce new information:

The role of deformations and defects

Defects and bulk together

Spectrum at continuous spin

... C_{123} from integrability?

Integrability also describes higher part of the spectrum. Are there other ways to use this information?

Getting information from what lies <u>outside</u> the Wilson line

 $\mathcal{A}_{\rm CFT}(\theta) \sim \mathcal{A}_{\rm CFT}(0) + \delta \mathcal{A}_{\rm CFT}$

$$\delta \mathcal{A}_{\rm CFT} = \mathbf{s} \int dt \ O_{\Phi^1_{\perp}}(t) + \sum_{k=2}^{\infty} \mathbf{s}^k \sum_n b_{n,k} e^{\Delta_n - 1} \int dt \ O_n(t).$$

One way to get constraints on the original 1d CFT is to expand at small deformation

These were just two of the simplest integrable deformations. There should be <u>many more</u> such identities.

Integrated n-point functions ... (cf. multi-point bootstrap)

Integrated non-BPS 4-pt functions...

Integrated local correlators from conformal deformations of the bulk theory...

Combining all these methods seems very powerful

Conformal Bootstrap + Integrability & including all kinds of Defects

Good luck to our network!

Small bibliography

Bootstrability for bulk operators

[Caron-Huot, Coronado, Zahraee 23] [Caron-Huot, Coronado, Zahraee 24]

Bootstrability with machine learning

Defects and integrated correlators

Integrability progress for 3-point functions

[Niarchos, Papageorgakis, Richmond, Stapleton Woolley 23]

[Billo Goncalves Lauria Meineri '16] [AC J. Julius, N. Gromov, M. Preti '22] [N. Drukker, Z. Kong, G. Sakkas '22] [Gabai Sever Zhong '25]

> [Basso Komatsu Vieira 15] [Basso Georgoudis Sueiro 22] [AC Gromov Levkovich-Maslyuk 18][Bercini Homrich Vieira 22]

Nice people in Torino who work on topics very close to the goals of HeI (WP1 & WP2)

Lorenzo Bianchi Marco Billo` Marco Meineri Roberto Tateo Nicolo` Primi Stefanos Kousvos Nicolo` Brizio Elia De Sabbata Thekla Lepper Andrea Mattiello David Abner Gutierrez Romero

Mariaelena Boglione

Emanuele Roberto Nocera

Andrea Signori

José Osvaldo Gonzalez Hernandez Jennifer Rittenhouse West Yiyu Zhou Tanishq Sharma Tetiana Yushkevych